
Abstract. The frequency dependence of third-order
properties can in the normal dispersion region be
expanded in a Taylor series in the frequency arguments.
The dispersion coe�cients thus obtained provide an
e�cient way of expressing the dispersion of frequency-
dependent properties and are transferable between
di�erent optical processes. We derive analytic expres-
sions for the dispersion coe�cients of third-order
properties in coupled cluster quadratic response theory
and report an implementation for the three coupled
cluster models CCS, CC2, and CCSD. Calculations are
performed for the ®rst hyperpolarizability of the NH3

molecule. The convergence of the dispersion expansion
with the order of the coe�cients is examined and we ®nd
good convergence up to about half the frequency at
which the ®rst pole in the hyperpolarizability occurs.
PadeÂ approximants improve the convergence dramati-
cally and extend the application range of the dispersion
expansion to frequencies close to the ®rst pole. The
sensitivity of the dispersion coe�cients on the dynamic
correlation treatment and on the choice of the one-
electron basis set is investigated. The results demonstrate
that, contrary to presumptions in the literature, the
dispersion coe�cients are sensitive to basis set e�ects
and correlation treatment similar to the static hyper-
polarizabilities.
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1 Introduction

Power series expansions of frequency-dependent hyper-
polarizabilities have in recent years become a widely

used tool for comparison of experimental or ab initio
calculated hyperpolarizabilities for di�erent optical
proccesses [1±5]. The most commonly used ansatz for
interpolation of dispersion curves and for the extrapo-
lation of measured frequency-dependent hyper-
polarizabilities to the static limit [1±7] are even power
series in the frequencies. Such expansions have also been
used to compare dispersion curves calculated with
di�erent ab initio methods [8]. The usefulness of the
dispersion expansions is emphasized by the fact that a
single, process-independent [9] second-order coe�cient
is obtained for the diagonal components of the hyper-
polarizability baaa and for the vector component parallel
to the molecular dipole moment bk [10]:

bk�x1; x2;x3� � bk�0� 1� A�x2
1 � x2

2 � x2
3� � O�x4

i �
ÿ �

�1�
A sum-over-states expression for the coe�cient A for the
expansion of the diagonal components baaa was derived
by Bishop and Kee [11], but an implementation has not
been reported. The usual approach in ab initio calcula-
tions of dispersion coe�cients has been to extract the
coe�cients from a polynomial ®t to pointwise calculated
frequency-dependent hyperpolarizabilities. Despite the
ine�ciency and the numerical di�culties of such an
approach [6, 8], no ab initio implementation has yet been
reported for analytic dispersion coe�cients for fre-
quency-dependent ®rst hyperpolarizabilities.

Recently, we have reported the implementation of the
quadratic response functions for the coupled cluster
model hierarchy CCS, CC2, and CCSD [12]. The imple-
mentation is based on the calculation of frequency-
dependent properties as derivatives of a variational
quasienergy Lagrangian. The 2n� 1 and 2n� 2 rules [13,
14] are employed to calculate ®rst hyperpolarizabilities
without solving higher than ®rst-order response equa-
tions. In the present publication we extend this work [12]
to the analytic calculation of dispersion coe�cients for
quadratic response properties. We de®ne the dispersion
coe�cients by a Taylor expansion of the quadratic re-
sponse function in its frequency arguments. Hence, this
approach is applicable to all hyperpolarizability compo-
nents and the coe�cients are independent of speci®c
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nonlinear optical processes. For the experimentally im-
portant vector components bk, b?, and bK we calculate,
from the coe�cients of the Taylor expansion, coe�cients
for more compact dispersion formulas similar to Eq. (1).

The generality of the power series expansion and the
open-ended formulation of the dispersion formulas fa-
cilitate an alternative approach to the calculation of
dispersion curves for hyperpolarizabilities complemen-
tary to the pointwise calculation of the frequency-
dependent property. In particular, if dispersion curves
are needed over a wide range of frequencies and for
di�erent optical processes, the calculation of the dis-
persion coe�cients can be a cost-e�cient alternative to
repeated calculations for di�erent optical processes and
di�erent frequencies. The explicit calculation of disper-
sion coe�cients also introduces a ¯exibility in the ac-
curacy with which the dispersion contribution is
determined by the order in the optical frequencies
through which the dispersion coe�cients are calculated.

In the next section we derive a Taylor expansion of
the coupled cluster quadratic response function in its
frequency arguments. For the experimentally important
vector components bk, b?, and bK we give explicit ex-
pressions for the A and higher-order coe�cients in terms
of the coe�cients of the Taylor series. In Sect. 3 we
apply the dispersion expansion to the calculation of ®rst
hyperpolarizabilities for the ammonia molecule. We test
the convergence of the hyperpolarizabilities with respect
to the order of the dispersion coe�cients and investigate
the sensitivity of the coe�cients to basis sets and cor-
relation treatment. The last section contains some con-
cluding remarks.

2 Theory

In the derivation of response functions we consider the
case where a molecule or an atom described by the time-
independent Hamiltonian Ĥ �0� is perturbed by an
external one-electron perturbation V̂ �t; ��:
Ĥ�t; �� � Ĥ �0� � V̂ �t; �� �2�
It is assumed that the perturbation operator V̂ �t; �� can
be expanded in a sum over Fourier components as

V̂ �t; �� �
X

j

ĤXj�j�xj�e�ÿixjt� �3�

where ĤXj are hermitian time- and ®eld-independent
one-electron operators and �j�xj� are the associated ®eld
strengths for frequencies xj. The letter � without index is
in the following used as a shorthand notation for the set
f�jg of ®eld strengths. The time-dependent ground-state
coupled cluster wavefunction for such a system is
conveniently parametrized in a form, where the oscillat-
ing phase factor caused by the so-called level-shift or
time-dependent quasi-energyW�t; �� is explicitly isolated
[15, 16]:��CC�t; ��� � exp

 
ÿi
Z t

t0

W�t0; �� dt0
!
exp T̂ �t; ��ÿ ���HF

�
�4�

T̂ �t; �� is the ®eld- and time-dependent cluster operator
T̂ �t; �� �Pl tl�t; ��ŝl and jHFi is the SCF wavefunction
of the unperturbed molecule. By keeping the Hartree-
Fock reference ®xed in the presence of the external
perturbation, a two-step approach, which would intro-
duce into the coupled cluster wavefunction an arti®cial
RPA pole structure, is circumvented.

The cluster amplitudes tl�t; �� are expanded in the
Fourier components of the applied perturbations and in
orders of the perturbation strengths as:

tl�t; �� � t�0�l �
X1
n�1

1

n!

X
j1

� � �
X

jn

tXj1 ���Xjn �xj1 ; . . . ;xjn�

�
Yn

m�1
�jm�xjm�eÿixjm t �5�

The quasi-energy W and the time-dependent coupled
cluster equations are determined by projecting the time-
dependent SchroÈ dinger equation

Ĥ ÿ i
d
dt

� ���CC�t; ��� � 0 �6�

onto the Hartree-Fock reference hHFj and onto the bra
states hHFjŝyl exp�ÿT̂ �:
W��; t� � HF Ĥ��; t� exp�T̂ ��� ��HF


 � �7�

HF
��ŝyl expÿÿT̂ �t; ���Ĥ�t; �� expÿT̂ �t; �����HF

�
ÿ i

d
dt

tl�t; �� � 0 �8�
The latter equation may be written in the shorthand
form

el�t; �� ÿ i
d
dt

tl�t; �� � 0 �9�
Frequency-dependent higher-order properties can be

obtained either by expansion of expectation values or as
derivatives of the quasi-energy with respect to the ®eld
strengths of the external perturbations. For nonvaria-
tional ab initio methods which do not satisfy the Hell-
man-Feynman theorem, the latter route is preferable,
because it conserves the symmetry of the response
functions with respect to permutations of the operators
Xi together with the accompanied frequencies xi. To
derive expressions for the derivatives of the coupled
cluster quasi-energy we use a variational formulation
which is obtained by combining the quasi-energy and the
time-dependent coupled cluster equations to a quasi-
energy Lagrangian:

L�t; �� �W�t; �� �
X

l

�tl
ÿ
el�t; �� ÿ i

d
dt

tl
� �10�

The time-average of the quasi-energy Lagrangian

fL�t; ��gT � lim
t0!1

1

2t0

Z�t0

ÿt0

L�t; �� dt �11�

may now be required to be stationary with respect to the
Fourier components of the cluster amplitudes and the
Lagrangian multipliers [12, 16±18]:
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dfL�t; ��gT � 0 �12�
Inserting the perturbation and Fourier expansion of

the cluster amplitudes (5) and an analogous expansion of
the Lagrangian multipliers into Eq. (12), this becomes a
variational condition for the individual expansion coef-
®cients. In zeroth-order one obtains the usual coupled
cluster equations, e�0� � 0, and the equations for the
zeroth-order Lagrangian multipliers:

g�0� � �t�0�A � 0 �13�

The vector g�0� and the Jacobian matrix A are de®ned as
partial derivatives of the quasi-energy and the Lagrang-
ian with respect to cluster amplitudes and Lagrangian
multipliers

g�0�m �
@W

@tm

� �
0

�14�

Alm � @2L
@�tl@tm

� �
0

�15�

The index 0 indicates that the derivative is taken for zero
perturbation strength. The equations for the ®rst-order
amplitudes and multipliers are obtained as:

nA � ÿAÿ x1
�
tA�x� � 0 �16�ÿ

gA � FtA�x��� �tA�x�ÿA� x1
� � 0 �17�

with nA, gA, and F de®ned as:

nA
l �

@2L
@�A@�tl

� �
0

�18�

gA
l �

@2L
@�A@tl

� �
0

�19�

Flm � @2L
@tl@tm

� �
0

�20�

The response functions are obtained as derivatives
of the real part of the time-averaged quasi-energy La-
grangian:

X1; X2; . . . ;Xnh ih ix2;...;xn
� dn 1

2 L�t; �� � 1
2 L�t; ��*� 	

T

d�1�x1� � � � d�n�xn�

 !
0

�21�
As a consequence of the time-averaging of the quasi-
energy Lagrangian, the derivative in the last equation
gives only a nonvanishing result if the frequencies of the
external ®elds ful®ll the matching condition

P
i xi � 0.

In third order, Eq. (21) gives the quadratic response
function:

A; B;Ch ih ixB;xC

� 1
2 Ĉ�xP̂ ABC

n
1
6GtA�xA�tB�xB�tC�xC�

� 1
2
�tA�xA�BtB�xB�tC�xC�

� 1
2 F

AtB�xB�tC�xC� � �tA�xA�ABtC�xC�
o

�22�

with xA � ÿ�xB � xC�. The operator P̂ ABC symmetrizes
with respect to permutations of the perturbation indices
A, B, and C and the accompanied frequencies and Ĉ�x

symmetrizes with respect to an inversion of the signs of
all frequencies and simultaneous complex conjugation.
The four matrices G, B, FX , and AX are de®ned as:

Glmc �
�

@3L
@tl@tm@tc

�
0

�23�

Blmc �
�

@3L
@�tl@tm@tc

�
0

�24�

F X
lm �

�
@3L

@�X@tl@tm

�
0

�25�

AX
lm �

�
@3L

@�X@�tl@tm

�
0

�26�

If the operators A, B, and C are components of the
dipole operator, the quadratic response function is equal
to minus the respective component of the ®rst hyperpo-
larizability bABC�xA; xB;xC�. An implementation of
Eq. (22) for the coupled cluster model hierachy CCS,
CC2, and CCSD has been reported in [12].

For a ®nite molecular or atomic system in its elec-
tronic ground state, the response function is analytic in
its frequency arguments with the exceptions of the poles
that occur when a frequency or a sum of frequencies
becomes equal to an excitation energy. Hence, for fre-
quencies below the ®rst pole, quadratic response func-
tions can be expanded in a power series in the frequency
arguments. Because the frequencies xA, xB, and xC are
related by the matching condition xA � xB � xC � 0,
®rst hyperpolarizabilities, or quadratic response prop-
erties in general, are functions of only two indepen-
dent frequency variables, which may be chosen as xB
and xC :

bABC�ÿxB ÿ xC ; xB;xC� �
X1

n;m�0
xn

Bxm
CDABC�n;m� �27�

To derive computational tractable expressions for the
dispersion coe�cients DABC�n;m� we need the power
series expansion of the ®rst-order responses of the cluster
amplitudes and the Lagrangian multipliers in the
frequencies. In [19] we have introduced the coupled
cluster Cauchy vectors:

CX �n� � 1

n!

dntX �xX �
dxn

X

� �
xX�0
� ÿAÿnÿ1nX �28�

tX �xX � �
X1
n�0

xn
X CX �n� �29�

The Cauchy vectors for n � 0 are obtained by solution
of a recursive set of linear equations, starting with the
zeroth-order Cauchy vector CX �0� which is equal to the
static limit of the ®rst-order cluster amplitude response:

CX �0� � tX �0� �30�
CX �n� � Aÿ1CX �nÿ 1� �31�
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The corresponding expansion for the ®rst-order
Lagrange multipliers is found as:

�CX �n� � 1

n!

dn�tX �xX �
dxX

� �
xX�0

�32�

� �ÿ1�n�1gXAÿnÿ1

�
Xn

m�0
�ÿ1�m�1ÿFCX �nÿ m��Aÿmÿ1 �33�

�tX �xX � �
X1
n�0

xn
X

�CX �n� �34�

As can be proven by induction, the �CX �n� vectors for
n � 0 can be calculated by the recurrence relations:

�CX �0� � �tX �0� �35�
�CX �n� � ÿ�FCX �n� � �CX �nÿ 1��Aÿ1 �36�

The matrices G, B, FX , and AX were de®ned in Eqs.
(23)±(26) as partial derivatives of the quasi-energy La-
grangian taken at zero ®eld strengths, � � 0, and hence
are frequency independent. To ®nd the power series
expansion of Eq. (22) in xB and xC we have thus to
replace the ®rst-order cluster amplitudes and Lagrangian
multipliers by the expansions in Eqs. (29) and (34) and
must express xA as ÿxB ÿ xC . For the ®rst step it is
convenient to introduce the intermediates

dABC�j; k; l�
� P̂ ABC

jkl

n
1
6GCA�j�CB�k�CC�l� � 1

2
�CA�j�BCB�k�CC�l�

� 1
2 dj0F

ACB�k�CC�l� � dk0 �CA�j�ABCC�l�
o

�37�
The operator P̂ ABC

jkl used in Eq. (37) symmetrizes with
respect to permutation of the operators A, B, C together
with the accompanied ``Cauchy'' orders j, k, l; d is the
Kronecker symbol. Using the intermediates dABC�j; k; l�,
the hyperpolarizability can be expanded around its static
limit as:

bABC�xA; xB;xC�

� ÿ1
2 Ĉ�x

X1
j;k;l�0

xj
Axk

Bxl
CdABC�j; k; l� �38�

� ÿ1
2 Ĉ�x

X1
pq�0

X1
kl�0
�ÿ1�p�q p � q

p

� �
xp�k

B xq�l
C

� dABC�p � q; k; l� �39�

� ÿ1
2 Ĉ�x

X1
mn�0

xn
Bxm

C

Xn

p�0

Xm

q�0
�ÿ1�p�q p � q

p

� �
� dABC�p � q; nÿ p;mÿ q� �40�

and the dispersion coe�cients DABC�n;m� are found as

DABC�n;m� � ÿ
Xn

p�0

Xm

q�0
�ÿ1�p�q p � q

p

� �
� 1

2 dABC�p�q; nÿp;mÿq� � �ÿ1�m�nÿ
� dABC�p�q; nÿp;mÿq��� �41�

From the last equation it follows that all coe�cients
with even total order m� n are real

DABC�n;m� � ÿ
Xn

p�0

Xm

q�0
�ÿ1�p�q p � q

p

� �
�Re

ÿ
dABC�p�q; nÿp;mÿq�� �42�

while coe�cients with odd m� n are pure imaginary:

DABC�n;m� � ÿ
Xn

p�0

Xm

q�0
�ÿ1�p�q p � q

p

� �
� Im

ÿ
dABC�p�q; nÿp;mÿq�� �43�

For electric hyperpolarizabilities, all three operators A,
B, and C are real and for these properties the odd
dispersion coe�cients vanish.

As mentioned in the Introduction, the direct ab initio
calculation of the dispersion coe�cients opens an alter-
native route to the calculation of dispersion curves for
frequency-dependent properties which is complementary
to the conventional approach of a pointwise calculation
of the frequency-dependent property for a certain
number of frequencies between which the dispersion
curve is interpolated using a polynomial or rational
function. For both approaches the computational most
demanding steps (in terms of CPU time) are the solution
of linear equations. The pointwise calculation of a gen-
eral frequency-dependent third-order property requires
at each frequency point the solution of four sets of linear
equations �tX �xX �, tX �ÿxX �, �tX �xX �, �tX �ÿxX �]. In
comparison, the calculation of the dispersion coe�cients
requires for each additional even order 2k � n� m the
solution of the four sets of linear equations for the
vectors CX �2k ÿ 1�, CX �2k�, �CX �2k ÿ 1�, �CX �2k�.

For optical processes which can be parametrized in
terms of a single laser frequency like the electro-optical
or dc Pockels e�ect (EOPE), second harmonic genera-
tion (SHG), and optical recti®cation (OR), specialized
versions of Eq. (27) can be derived. For the electro-
optical Pockels e�ect one obtains:

bEOPE
ABC �x� � bABC�ÿx; x; 0� �

X1
n�0

x2nDEOPE
ABC �n� �44�

with

DEOPE
ABC �n� � DABC�n; 0� �45�

and for the second harmonic generation the dispersion
formula is:

bSHG
ABC �x� � bABC�ÿ2x; x;x� �

X1
n�0

x2nDSHG
ABC �n� �46�

with

DSHG
ABC �n� �

Xn

m�0
DABC�nÿ m;m� �47�

The hyperpolarizability describing the electro-optical
Pockels e�ect is related to the optical recti®cation hyper-

polarizability by bOR
CBA�x� = bEOPE

ABC �x�. Accordingly, the
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dispersion coe�cients are related by DOR
CBA�n� �

DEOPE
ABC �n�.
For the vector component of the ®rst hyperpolariza-

bility in the direction of the permanent dipole moment,
which is de®ned as

bk �
1

5

X
n

�
bznn � bnzn � bnnz

	
n � x; y; z �48�

with the z axis chosen parallel to the molecular dipole
moment, an alternative, more compact, expansion can
be used [20]:

bk�x0; x1;x2�

� bk�0� 1�
X1
n�1

Xn=3
m�0

A2nÿ6m;6mx2nÿ6m
L2 x6m

L3

 !
�49�

with x2
L2 � x2

0 � x2
1 � x2

2 and x3
L3 � x3

0 � x3
1 � x3

2 �
3x0x1x2 [20, 21]. Adopting a notation commonly used
for dispersion formulas for the isotropic second hyper-
polarizability ck [4], Eq. (49) can up to sixth order in the
frequencies be written as

bk�x0; x1;x2�
� bk�0�

ÿ
1� Ax2

L2 � Bx4
L2

� Cx6
L2 � C0x6

L3 � � � �
� �50�

The coe�cients A, B, C, C0 etc. are related to the
dispersion coe�cients D�n;m� introduced in Eqs. (27)
and (41). The necessary expressions are found by
equating the coe�cients for the frequency products
xn

1x
m
2 in Eq. (49) with the coe�cients of the Taylor

expansion of bk�x0; x1;x2� in x1 and x2 as in Eq. (27).
Introducing, by analogy to the averaged hyperpolariza-
bility, the averaged dispersion coe�cients

Dk�n;m� � 1

5

X
n

�
Dznn�n;m� � Dnzn�n;m� � Dnnz�n;m�

	
n � x; y; z �51�

the A and B coe�cients, for example, can be calculated
as:

A � 1

2bk�0�
Dk�2; 0� �52�

B � 1

4bk�0�
Dk�4; 0� �53�

Expressions for the sixth- through tenth-order coe�-
cients are given in the Appendix. Another important
hyperpolarizability component is [4]:

b? �
1

5

X
n

�
2bznn ÿ 3bnzn � 2bnnz

	
n � x; y; z �54�

which is related to the measured quantity in electro-
optical Pockels and dc Kerr experiments bK as [4]:

bK �
3

2

ÿ
bk ÿ b?

� �55�
To obtain a similar dispersion formula for b?, this
hyperpolarizability component must be written as a sum

of two tensor components which are irreducible with
respect to the permutational symmetry of the operator
indices and frequency arguments [22]:

b? � 1
3bk � 2

3bms �56�
bms �

X
n

�
1
2 bznn ÿ bnzn � 1

2 bnnz

	
n � x; y; z �57�

The index ms indicates that bms transforms according to
the mixed-symmetry representation of the symmetric
group S3. This irreducible tensor component vanishes in
the static limit and also if Kleinman symmetry [4, 23] is
assumed, which is a frequently used approximation in
the calculation of dynamic hyperpolarizabilities. The
value of bms is thus a measure for the deviation from
Kleinman symmetry. The hyperpolarizability measured
in Kerr e�ect experiments bK, Eq. (54), may be
expressed as the di�erence between bk and bms:

bK � bk ÿ bms �58�
The irreducible tensor component bms can be expanded
in powers of the optical frequencies as [20, 21]:

bms�x0; x1;x2�

� bk�0�
�X1

n�0

Xn=3
m�0

A1;2nÿ6m;6m�3xM1x
2nÿ6m
L2 x6m�3

L3

�
X1
n�0

Xn=3
m�0

A2;2nÿ6m;6mx2
M2x

2nÿ6m
L2 x6m

L3

�
�59�

with xM1 � 2x1 ÿ x2 ÿ x0 and x2
M2 � 2x2

1 ÿ x2
2 ÿ x2

0.
Using a similar notation as in Eq. (50) the dispersion
expansion for bms can up to fourth order be written as:

bms�x0; x1;x2� � bk�0�
ÿ
Amsx

2
M2 � Bmsx

2
M2x

2
L2

� B0msxM1x
3
L3 � � � �

� �60�
The coe�cients of the dispersion formula for bms can
again be calculated from the dispersion coe�cients
D�n;m� for the cartesian components of b. Expressions
for the coe�cients up to tenth order are given in the
Appendix.

For the dc Pockels e�ect �b�ÿx; x; 0�� and for the
optical recti®cation process �b�0;ÿx;x��, where one of
the frequency arguments is zero, the e�ective frequency
x3

L3 vanishes and the expansions in Eqs. (49) and (59)
reduce to:

bk�ÿx; x; 0� � bk�0; x;ÿx�

� bk�0� 1�
X1
n�1

22nA2n;0x
2n

 !
�61�

and

bms�ÿx; x; 0� � bms�0; x;ÿx�

� bk�0� 0�
X1
n�0

22nA2;2n;0x
2n�2

 !
�62�

Inserting Eqs. (49) and (59) into Eqs. (56) and (58)
we obtain dispersion formulas for the experimentally
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important hyperpolarizability components b? and bK.
Up to fourth order they read:

b?�x0; x1;x2� �
bk�0�
3

�
1�

�
A� 2Ams

x2
M2

x2
L2

�
x2

L2

�
�

B� 2Bms
x2

M2

x2
L2

�
x4

L2

� 2B0msxM1x
3
L3 � � � �

�
�63�

bK�x0; x1;x2� � bk�0�
�
1�

�
Aÿ Ams

x2
M2

x2
L2

�
x2

L2

�
�

Bÿ Bms
x2

M2

x2
L2

�
x4

L2

ÿ B0msxM1x
3
L3 � � � �

�
�64�

For the second hyperpolarizability the deviation of the
ratio ck=c? from 3 is sometimes used as a measure for
the deviation from Kleinman symmetry [1]. Bishop [24]
showed that this ratio can be expanded up to second
order in frequency arguments as:

ck�x0; x1;x2;x3�
c?�x0; x1;x2;x3�
� 3
ÿ
1� r�x2

L � 6x0x3 � 6x1x2� � � � �
� �65�

where r is frequency independent. Using Eqs. (50) and
(60) we can expand the analogous ratio for the ®rst
hyperpolarizabilty up to second order as:

bk
b?
� 3bk

bk � 2bms

� 3
ÿ
1ÿ 2Amsx

2
M2 � � � �

� �66�

Using the approach outlined in Eqs. (27)±(60) we have
implemented the calculation of dispersion coe�cients for
quadratic response functions for the coupled cluster
model hierarchy CCS, CC2, and CCSD into the coupled
cluster response code described in [12, 18, 19, 25±31].

3 Dispersion coe�cients for the ®rst hyperpolarizability
of ammonia

To investigate the convergence of the dispersion expan-
sion and the sensitivity of the coe�cients to basis set and
correlation treatment, we calculated the dispersion
coe�cients for ammonia, NH3, up to tenth order with
three di�erent basis sets and the three coupled cluster
models CCS, CC2, and CCSD. The calculations were
carried out at the experimental geometry RNH = 1.012 AÊ

and �HNH = 106.7� [32] and we used three basis sets
taken from the series of correlation consistent basis sets
developed by Dunning and coworkers [33±35], namely t-
aug-cc-pVDZ, aug-cc-pVTZ, and t-aug-cc-pVTZ. These
basis sets were selected to obtain basis set saturation to
di�erent levels of accuracy. The t-aug-cc-pVDZ does not
contain f functions at the N atom and no d functions for
H, but many di�use functions, while the aug-cc-pVTZ
basis contains these higher angular momentum functions

but only a few di�use functions. The t-aug-cc-pVTZ
basis set is expected to give results near the basis set limit
as it contains higher angular momentum functions and a
su�cient number of di�use functions. The CCSD results
for the frequency-dependent ®rst hyperpolarizabilities of
ammonia obtained in the t-aug-cc-pVTZ basis set are in
reasonable agreement with the experimental result from
Ward and Miller [36], who measured at the ruby laser
frequency the second harmonic generation hyperpolar-
izability of ammonia bSHG

k �694:3 nm� � ÿ48:4 � 1:2 au
[37]. The CCSD response result in the t-aug-cc-pVTZ
basis at the equilibrium geometry is for this frequency
ÿ51.2 au. The zero-point vibrational correction was
calculated by Spirko et al. [38] at the MCSCF level and
was found to increase the absolute value of bSHG

k by
about 6%. The pure vibrational contribution was
estimated by Bishop et al. [39] as �ÿ0:18 au. Adding
these corrections to the CCSD response result for the
t-aug-cc-pVTZ basis we obtain �ÿ54:5 au, which
compares reasonable well with the experimental result
if one takes into account that we have not included the
e�ects of connected triples.

First, we examine the convergence of truncated ex-
pansions with the order of the dispersion coe�cients. In
Table 1 we have listed the coe�cients for the parallel
hyperpolarizability component bk for SHG and for the

EOPE, DSHG
k �n� (Eq. 47) and DEOPE

k �n� (Eq. 45), for

the aug-cc-pVTZ basis, and a CCSD wavefunction.
From these coe�cients we calculated for three di�erent
frequencies, which cover the usual experimental range of
0:04±0:1 au, the Taylor approximations of order 2
through 10 and the diagonal PadeÂ approximants [40]
which are correct through the same order in the fre-
quency arguments. The results are compiled in Table 2
and displayed for selected orders in Fig. 1 together with
the hyperpolarizabilities obtained from response func-
tion calculations without expansion for the frequency
dependence. For the EOPE we ®nd a fast convergence of
the dispersion expansion. Already the fourth-order
Taylor approximation gives results which up to x = 0.1
au are within 2% of the nonexpanded hyper-
polarizabilities. Using the [1, 1] PadeÂ approximant,
which is constructed from the same dispersion coe�-
cients and is also correct up to O�x4�, decreases the error
by about an order of magnitude. With this accuracy, the
error in the dispersion expansion is already smaller than
the remaining basis set e�ects, vibrational e�ects, or the
contribution of connected triple excitations. Thus, the

Table 1. Coe�cients for bjj�x� for second harmonic generation
(SHG) and electro-optical Pockels e�ect (EOPE) of ammonia at the
experimental geometry. A CCSD wavefunction and the aug-cc-
pVTZ basis were used. Results are given in atomic units; the
numbers in parentheses indicate powers of ten

Order SHG EOPE

0 )2.79248(1) )2.79248(1)
2 )2.37315(3) )7.91105(2)
4 )1.75122(5) )1.94579(4)
6 )1.23489(7) )4.39681(5)
8 )8.49697(8) )9.33439(6)
10 )5.77775(10) )1.89759(8)
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inclusion of the sixth-order coe�cient will in this case
hardly a�ect a comparison with experiment.

The convergence rate of the Taylor expansion and the
series of diagonal PadeÂ approximants is determined by
the position of the ®rst pole in the hyperpolarizability.
For bOR

k �x� this occurs when x equals the ®rst dipole-
allowed transition energy. In the example we used here
(CCSD, aug-cc-pVTZ basis), this is the case for

x � 0:243 au or k = 187 nm, which is much larger than
the frequencies we considered. For the SHG hyperpo-
larizability bSHG

k �x� the situation is di�erent, because in
bSHG
k �x� the ®rst pole occurs already when x equals half

the excitation energy of the transition. Thus the ®rst pole
for bSHG

k �x� occurs already at x � 0:122 au, i.e. slightly
above the largest frequency considered in Table 2.
Consequently, the convergence of the SHG hyperpo-
larizability is not so favorable as for bEOPE

k �x�. However,
a sixth-order Taylor approximation is still for frequen-
cies up to that of the ruby laser (k = 694.5 nm) within
1% of the nonexpanded hyperpolarizabilities. Again, the

Table 2. Convergence of the
Taylor series and the series of
diagonal PadeÂ approximants

for bSHG
k �x� and bOR

k �x�
(CCSD, aug-cc-pVTZ basis).

The ``ini®nite'' order results
were calculated using the im-
plementation for the frequency-
dependent response function

Order/
approximant

bOR
jj �x� (au)

x � 0:0428286 au x � 0:0656249 au x � 0:1 au
�k � 1064 nm) �k � 694:3 nm) �k � 455:6 nm)

Taylor PadeÂ Taylor PadeÂ Taylor PadeÂ

2/[0, 1] ÿ29:3755 ÿ29:4549 ÿ31:3316 ÿ31:8050 ÿ35:8354 ÿ38:9619
4/[1, 1] ÿ29:4409 ÿ29:4440 ÿ31:6925 ÿ31:7353 ÿ37:7812 ÿ38:4159
6/[1, 2] ÿ29:4436 ÿ29:4437 ÿ31:7276 ÿ31:7311 ÿ38:2208 ÿ38:3376
8/[2, 2] ÿ29:4437 ÿ29:4437 ÿ31:7308 ÿ31:7311 ÿ38:3142 ÿ38:3374
10/[2, 3] ÿ29:4437 ÿ29:4437 ÿ31:7311 ÿ31:7311 ÿ38:3332 ÿ38:3375
1 ÿ29:4437 ÿ31:7311 ÿ38:3378

bSHG
jj �x� (au)

2/[0, 1] ÿ32:2767 ÿ33:0801 ÿ38:1451 ÿ44:0450 ÿ51:6564 ÿ185:962
4/[1, 1] ÿ32:8656 ÿ32:9577 ÿ41:3931 ÿ42:9061 ÿ69:1685 ÿ118:478
6/[1, 2] ÿ32:9417 ÿ32:9528 ÿ42:3795 ÿ42:7983 ÿ81:5174 ÿ108:943
8/[2, 2] ÿ32:9513 ÿ32:9527 ÿ42:6718 ÿ42:7919 ÿ90:0144 ÿ107:446
10/[2, 3] ÿ32:9525 ÿ32:9527 ÿ42:7574 ÿ42:7924 ÿ95:7922 ÿ107:706
1 ÿ32:9527 ÿ42:7926 ÿ107:883

Fig. 1. Convergence of bSHG
k �x� and bEOPE

k �x� with the order of
the Taylor and PadeÂ approximants (dispersion coe�cients calcu-
lated with a CCSD wavefunction and the aug-cc-pVTZ basis)
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use of PadeÂ approximants improves the convergence
dramatically. With the [1,2] approximant, calculated
from the coe�cients up to DSHG

k �6�, one obtains for fre-
quencies up to 0.1 au results within 1% of the nonex-

panded hyperpolarizabilities. Such an accuracy
is su�cient for many applications. Usually, the
uncertainity of experimental measurements of bk are
signi®cantly larger than this uncertainity, often of the
order of 10% , and also for ab initio calculations a 1%
accuracy for hyperpolarizabilities is a challenging task
not met for polyatomic systems, in particular close to a
pole.

In the literature it has been speculated that the A and
higher-order hyperpolarizability dispersion coe�cients

Table 3. Comparison of the dispersion coe�cients for bjj and bms for di�erent basis sets and coupled cluster models

CCS CC2 CCSD

taD aT taT taD aT taT taD aT taT

bk�0�a )1.973(1) )1.905(1) )2.107(1) )4.680(1) )3.853(1) )4.666(1) )3.306(1) )2.792(1) )3.302(1)

A 1.097(1) 9.693(0) 1.042(1) 1.724(1) 1.503(1) 1.564(1) 1.640(1) 1.416(1) 1.477(1)
B 1.072(2) 9.324(1) 9.904(1) 2.331(2) 1.940(2) 1.979(2) 2.111(2) 1.742(2) 1.774(2)
C 9.503(2) 8.447(2) 8.669(2) 2.846(3) 2.313(3) 2.290(3) 2.435(3) 1.968(3) 1.938(3)
C0 2.429(2) 2.079(2) 2.212(2) 7.206(2) 5.672(2) 5.733(2) 6.124(2) 4.750(2) 4.817(2)
D 7.893(3) 7.192(3) 7.156(3) 3.286(4) 2.602(4) 2.514(4) 2.644(4) 2.089(4) 2.000(4)
D0 6.210(3) 5.274(3) 5.601(3) 2.627(4) 1.970(4) 1.989(4) 2.097(4) 1.552(4) 1.568(4)
E 6.286(4) 5.838(4) 5.675(4) 3.664(5) 2.811(5) 2.669(5) 2.766(5) 2.124(5) 1.991(5)
E0 1.011(5) 8.609(4) 9.064(4) 6.054(5) 4.353(5) 4.366(5) 4.534(5) 3.223(5) 3.228(5)

Ams )0.810(0) )0.380(0) )0.570(0) )2.494(0) )2.080(0) )1.895(0) )2.147(0) )1.579(0) )1.580(0)
Bms )2.494(1) )2.535(1) )2.205(1) )5.377(1) )5.291(1) )4.335(1) )4.758(1) )4.545(1) )3.836(1)
B0ms )3.159(0) )2.495(0) )3.028(0) )1.072(1) )0.906(1) )0.902(1) )8.758(0) )7.274(1) )7.301(1)
Cms )3.155(2) )3.479(2) )2.868(2) )7.753(2) )7.758(2) )6.180(2) )6.671(2) )6.603(2) )5.349(2)
C0ms )1.018(2) )8.846(1) )9.453(2) )3.546(2) )2.951(2) )2.831(2) )2.866(2) )2.364(2) )2.279(2)
Dms )3.017(3) )3.370(3) )2.756(3) )9.424(3) )9.143(3) )7.271(4) )7.725(3) )7.465(3) )6.008(3)
D0ms )1.733(3) )1.597(3) )1.591(3) )7.237(3) )5.986(3) )5.526(3) )5.655(3) )4.659(3) )4.314(3)
D00ms )4.483(2) )4.792(2) )4.068(2) )1.887(3) )1.730(3) )1.419(3) )1.435(3) )1.304(3) )1.079(3)
Ems )2.524(4) )2.799(4) )2.303(4) )1.046(5) )0.967(5) )0.775(5) )8.094(4) )7.481(4) )6.052(4)
E0ms )2.213(4) )2.115(4) )2.018(4) )1.180(5) )0.962(5) )0.863(5) )8.805(4) )7.165(4) )6.445(5)
E00ms )1.402(4) )1.496(4) )1.275(4) )7.485(4) )6.578(4) )5.430(4) )5.464(4) )4.779(4) )3.971(4)
E000ms )1.640(3) )1.528(3) )1.513(3) )1.067(4) )0.858(4) )0.773(4) )7.529(3) )6.001(3) )5.436(3)
a the SCF results in the three basis sets are: t-aug-cc-pVDZ, 14.35
au; aug-cc-pVTZ, 13.69 au; t-aug-cc-pVTZ, 15.50 au; other corre-
lated ab initio results for bjj�0� are: MP2, CCSD, and CCSD(T) in a

�5s3p2d=3s2p1d� � �1s1p� basis: 32.5, 30.0, and 34.5 au [45];
MCSCF in a �8s5p3d1f =4s2p1d� basis: 27.77 au [38]; MCSCF in a
d-aug-cc-pVDZ basis: 28.24 au [8]

Fig. 2. The parallel vector component bk�ÿx1 ÿ x2; x2;x3� of the
®rst hyperpolarizability of ammonia as a function of the frequen-
cies x1 and x2, calculated from the dispersion coe�cients through
tenth order for a CCSD wavefunction and the aug-cc-pVTZ basis
set (experimental equilibrium geometry)
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are less dependent on the choice of basis set and ab initio
method than static hyperpolarizabilities [2±4]. In par-
ticular, it was expected that the dispersion coe�cients
are less sensitive to the correlation treatment than the
static hyperpolarizabilities. This expectation was based
on the observation that the MP2 pseudo-energy deriv-
ative method developed by Rice and Handy [41] gave for
some molecules similar A coe�cients as were obtained in
time-dependent Hatree-Fock (TDHF) calculations with
the same basis sets [3, 4]. For theoretical reasons the A
coe�cient and higher-order coe�cients should be sen-
sitive to the lowest dipole-allowed excitation energy
which determines the position of the ®rst pole in the
dispersion curve. Since in the MP2 pseudo-energy de-
rivative method the positions of the poles are not cor-
related and thus are the same as in TDHF, it is not
unexpected that both methods give similar A coe�cients.
In Table 3 we compiled the dispersion coe�cients for bk
and bms for the three basis sets t-aug-cc-pVDZ, aug-cc-
pVTZ, and t-aug-cc-pVTZ and the three coupled cluster
models CCS, CC2, and CCSD. For ammonia, the dis-
persion coe�cients for the Kleinman-forbidden mixed-
symmetry vector component bms are about an order of
magnitude smaller than the coe�cient of the same order
in the frequencies for bk. As a consequence, the di�er-
ence between bk and bK is relatively small, as seen in
Figs. 2 and 4. The perpendicular hyperpolarizability
component b? is shown in Fig. 3. If we compare the
results obtained for the static hyperpolarizability bk�0�
with CCS, CC2, and CCSD, we ®nd that these methods
behave similar to what we have observed in previous
coupled cluster response calculations of polarizabilities
and hyperpolarizabilities [12, 19, 42]: CCS gives results
of similar quality as SCF and the CCSD results are

usually close to the experimental results, while CC2
often overestimates the static hyperpolarizabilities by a
similar amount as they are underestimated by CCS and
HF. In many cases, CC2 is not an improvement relative
to the uncorrelated methods CCS and SCF. This is in
contrast to the good performance of CC2 for excitation
energies, where usually the results improve systemtically
in each step of the hierarchy CCS±CC2±CCSD [27, 43].
If we compare the dispersion coe�cients for the three
coupled cluster models listed in Table 3, we ®nd a large
increase of the dispersion coe�cients from CCS to
CCSD by a factor of 1.4±4.8. The inclusion of dynamic
electron correlation increases signi®cantly the dispersion
of the hyperpolarizability. For all coe�cients the CC2
results are about a factor 3 closer to the CCSD results
than the CCS values. In particular, for the two leading
coe�cients for bk, A and B, the CC2 results di�er only by
6% and 11% from the CCSD values.

If we compare the results for the three basis sets
t-aug-cc-pVDZ, aug-cc-pVTZ, and t-aug-cc-pVTZ, we
®nd large but quite di�erent basis set e�ects for the static
hyperpolarizabilties and for the dispersion coe�cients.
The static hyperpolarizabilties are very sensitive to the
inclusion of di�use functions, as also observed in many
previous studies. The results for bk in the t-aug-cc-pVDZ
and t-aug-cc-pVTZ basis sets are thus similar and by
about 10±15% larger than the aug-cc-pVTZ basis re-
sults. In contrast, the dispersion coe�cients show large
changes from the t-aug-cc-pVDZ basis to the triple zeta
basis sets aug-cc-pVTZ and t-aug-cc-pVTZ, in particular
for the correlated models CC2 and CCSD, but only
small changes with an increasing number of di�use
functions.

4 Conclusions

We have derived and implemented analytic dispersion
coe�cients for the quadratic response function of the
coupled cluster models CCS, CC2, and CCSD. The

Fig. 3. The perpendicular vector component b?�ÿx1 ÿ x2; x2;x3�
of the ®rst hyperpolarizability of ammonia as a function of the
frequencies x1 and x2, calculated from the dispersion coe�cients
through tenth order for a CCSD wavefunction and the aug-cc-
pVTZ basis set (experimental equilibrium geometry)
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dispersion coe�cients are de®ned through a power
series expansion of the quadratic response function in
its frequency arguments and are thus applicable to
general frequency-dependent third-order properties and
independent of the nonlinear optical process. For the
irreducible tensor components the dispersion can be
expressed in compact dispersion formulas using per-
mutation symmetry-adapted linear combinations of the
optical frequencies. In an application to the ®rst
hyperpolarizability of ammonia, we ®nd fast conver-
gence of the Taylor expansion up to frequencies of
half the ®rst pole. With PadeÂ approximants the
convergence of the dispersion expansion can be im-
proved signi®cantly and its application range is extend-
ed to frequencies near to the ®rst pole. For many
molecules, in particular such with high-lying ®rst
transition frequencies, the ®rst two or three dispersion
coe�cients will be su�cient to obtain the dispersion
curves within a 1% accuracy in the usual experimental
frequency range. A comparison of the dispersion
coe�cients obtained with three di�erent basis sets and
the three coupled cluster models CCS, CC2, and CCSD
shows that the dispersion coe�cients are similarly
sensitive to the choice of the basis set and the
correlation treatment as the static hyperpolarizability,
although the e�ects are di�erent. While the static
hyperpolarizability is very sensitive to the saturation of
the basis set with di�use functions, the dispersion
coe�cients are only a�ected a little by the number of
di�use functions. However, relatively large changes are
found with respect to the zeta level of the valence basis.
We also ®nd that for the static hyperpolarizability and
for the dispersion coe�cients the performance of the
coupled cluster model hierarchy CCS±CC2±CCSD is

quite di�erent: while the static CC2 hyperpolarizability
is not improved compared to the CCS result, the CC2
dispersion coe�cients are closer to the CCSD results by
about a factor of three compared to the corresponding
CCS values. The basis set e�ects on the dispersion
coe�cients and the performance of the coupled cluster
hierarchy are consistent with the expectation that the
dispersion coe�cients are sensitive to the accuracy with
which the lowest dipole-allowed excitations are de-
scribed.
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Appendix A. Formulas for the sixth- through
tenth-order dispersion coe�cients for bk and bms

The coe�cients for the sixth- through tenth-order terms
of the dispersion expansion of Eq. (49) for bk are found
as:

C � A3;0 � 1

8bk�0�
Dk�6; 0� �A1�

C0 � A0;2 � 1

9bk�0�
ÿ
Dk�4; 2� ÿ 6Dk�6; 0�

� �A2�

D � A4;0 � 1

16bk�0�
Dk�8; 0� �A3�

D0 � A1;2 � 1

18bk�0�
ÿ
Dk�6; 2� ÿ 10Dk�8; 0�

� �A4�

E � A5;0 � 1

32bk�0�
Dk�10; 0� �A5�

E0 � A2;2 � 1

36bk�0�
ÿ
Dk�8; 2� ÿ 15Dk�10; 0�

� �A6�

Fig. 4. The Kerr component bK�ÿx1 ÿ x2; x2;x3� of the ®rst
hyperpolarizability of ammonia as a function of the frequencies x1

and x2, calculated from the dispersion coe�cients through tenth
order for a CCSD wavefunction and the aug-cc-pVTZ basis set
(experimental equilibrium geometry)
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The dispersion coe�cients for bms are obtained as:

Ams �A2;0;0 � 1

bk�0�
Dms�2; 0� �A7�

Bms � A2;1;0 � 1

2bk�0�
Dms�4; 0� �A8�

B0ms � A1;0;1 � ÿ 1

9bk�0�
ÿ
Dms�3; 1� � Dms�4; 0�

� �A9�

Cms � A2;2;0 � 1

4bk�0�
Dms�6; 0� �A10�

C0ms � A1;1;1 � ÿ 1

18bk�0�
Dms�5; 1� �A11�

Dms � A2;3;0 � 1

8bk�0�
Dms�8; 0� �A12�

D0ms � A1;2;1 � ÿ 1

36bk�0�
ÿ
Dms�7; 1� ÿ Dms�8; 0�

� �A13�

D00ms � A2;0;2 � 1

9bk�0�
ÿ
Dms�6; 2� ÿ 3Dms�7; 1�

� 5Dms�8; 0�
� �A14�

Ems � A2;4;0 � 1

16bk�0�
Dms�10; 0� �A15�

E0ms � A1;3;1 � ÿ 1

72bk�0�
ÿ
Dms�9; 1� ÿ 2Dms�10; 0�

�
�A16�

E00ms � A2;1;2 � 1

18bk�0�
ÿ
Dms�8; 2� ÿ 4Dms�9; 1�

� 8Dms�10; 0�
� �A17�

E000ms � A1;0;3 � ÿ 1

81bk�0�
ÿ
Dms�7; 3� ÿ Dms�8; 2�

ÿ 5Dms�9; 1� � 22Dms�10; 0�
�

�A18�
with the intermediates Dms�n;m� de®ned as:

Dms�n;m�
�
X

n

n
1
2 Dznn�n;m� ÿ Dnzn�n;m� � 1

2 Dnnz�n;m�
o

n � x; y; z �A19�
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